
Journal of Geophysical Research: Space Physics

PYSAT: Python Satellite Data Analysis Toolkit

R. A. Stoneback1 , A. G. Burrell1 , J. Klenzing2 , and M. D. Depew1

1W. B. Hanson Center for Space Sciences, Physics Department, University of Texas at Dallas, Richardson, TX, USA,
2NASA Goddard Space Flight Center, Greenbelt, MD, USA

Abstract A common problem in space science data analysis is combining complementary data sources
that are provided and analyzed in different formats and programming languages. The Python Satellite Data
Analysis Toolkit (pysat) addresses this issue by providing an open source toolkit that implements the general
process of space science data analysis, from beginning to end, in an instrument-independent manner.
This toolkit uses an Instrument object that enables systematic analysis of science data from a variety of
platforms within a single interface. Basic functions such as downloading, loading, and cleaning are included
for all supported instruments. Common analysis routines are also included, which are instrument and
data source independent. A nanokernel is used to provide instrument independence, it is attached to the
Instrument object and mediates the systematic and arbitrary modification of loaded data. Pysat uses the
nanokernel to improve the rigor of time series analysis, support on-the-fly orbit determination, and cleanly
span file breaks. Pysat’s functions and higher-level scientific analysis features are validated through the
use of unit testing. Further adoption by the community provides a set of scientific results produced by a
common core, constituting a distributed heritage that supports the validity of the underlying processing
and scientific output. These features are used to demonstrate consistency between derived electron
density profiles and measured ion drifts, particularly downward ion drifts in the afternoon hours during
extreme solar minimum. Pysat builds upon open source Python software that is freely available and
encourages community-driven development.

1. Introduction

The study of the geospace environment requires a wide variety of measurement techniques and a large num-
ber of measurement platforms. The quantity of data itself can be a problem due to the variety of file formats
and the unique characteristics of the underlying data. These practical difficulties hinder scientific advance-
ment and result in duplicated efforts, as individual scientists or research groups create their own tools to solve
old problems. The scale and impact of these duplicated efforts has become intolerable now that the geospace
community has begun to take a system science approach, which requires integrating measurements from
multiple platforms to understand the environment as a whole (CEDAR, 2010; Gil et al., 2016). Thus, there is
a need for a framework to accommodate these varied data sets in an open and reproducible manner, while
enabling versatility to pursue various avenues of scientific investigation.

To support these goals, a variety of open source python packages have been released. Numpy (van der
Walt et al., 2011), SciPy (Jones et al., 2001), Matplotlib (Hunter, 2007), and iPython (Párez & Granger, 2007)
constitute a set of core libraries that transforms standard Python into an interactive scientific comput-
ing environment similar to commercial packages such as Matlab or the Interactive Data Language (IDL).
PyGlow collects a variety of space science models in one place, simplifies installation, and provides a
python interface (Duly & Butala, 2013). Apexpy (Meeren et al., 2018) and Altitude Adjusted Corrected
Geomagnetic Coordinates version 2 (AACGMv2; Burrell et al., 2018) provide interfaces to magnetic field
models. OCBPy is a Python module that converts between AACGM coordinates and a magnetic coordi-
nate system that adjusts latitude and local time relative to the Open Closed field line Boundary (OCB;
Burrell & Chisham, 2018). DaViTPy (DaViTPy, 2012) provides a suite of tools designed to support the Super
Dual Auroral Radar Network (SuperDARN; Chisham et al., 2007; Greenwald et al., 1995). GeoData (Swo-
boda et al., 2016) is an application programming interface for obtaining and visualizing space science
data, with current support for ground-based systems. The Madrigal database, a repository of many space
science measurements, has a python interface (Rideout, 2004). SpacePy (Morley et al., 2010) includes a

TECHNICAL
REPORTS:
METHODS
10.1029/2018JA025297

Key Points:
• Pysat enables

instrument-independent science data
analysis

• Pysat supports open and reproducible
science

• Pysat provides a common ground for
community analysis

Correspondence to:
R. A. Stoneback,
rstoneba@utdallas.edu

Citation:
Stoneback, R. A., Burrell, A. G.,
Klenzing, J., & Depew, M. D.
(2018). PYSAT: Python Satellite
Data Analysis Toolkit. Jour-
nal of Geophysical Research:
Space Physics, 123, 5271–5283.
https://doi.org/10.1029/2018JA025297

Received 26 FEB 2018

Accepted 23 APR 2018

Accepted article online 9 MAY 2018

Published online 15 JUN 2018

©2018. American Geophysical Union.
All Rights Reserved.

STONEBACK ET AL. PYSAT 5271

https://ntrs.nasa.gov/search.jsp?R=20190002337 2020-05-07T21:56:12+00:00Z

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9402
http://orcid.org/0000-0001-7216-4336
http://orcid.org/0000-0001-8875-9326
http://orcid.org/0000-0001-8321-6074
http://dx.doi.org/10.1029/2018JA025297
https://doi.org/10.1029/2018JA025297

Journal of Geophysical Research: Space Physics 10.1029/2018JA025297

variety of tools to support space science, a partial list includes field line tracing, file format support, coor-
dinate conversions, superposed epoch analysis support, and time support functions. pysatCDF (Stoneback
& Depew, 2018) provides a python interface to National Aeronautics and Space Administration Common
Data Format (NASA CDF) libraries and additional functionality to format these data for coupling with pysat.
To simplify installation, the NASA CDF source code is included within pysatCDF and compiled automatically
using standard community tools. A pure python implementation for CDF reading and writing without the use
of the NASA C library is under development (Harter & Liu, 2018).

The Python Satellite Data Analysis Toolkit (pysat) presented here is an open source software package that
handles the tedious details of file and data handling with a consistent front end, allowing researchers to focus
on the unique aspects of their scientific research. Pysat’s design evolved through years of data analysis using
a variety of space and ground-based platforms and data types to enable the versatility required to address
scientific questions within a single interface. The generalized treatment of data sets and processing by pysat
provides the common ground needed to integrate many python package and sources of data into a cohesive
whole that enables system science.

Pysat support begins with assisting users in obtaining data. Each instrument supported by pysat includes
routines to download data from appropriate public locations, organize the files on the local computer, and
clean the data.

Pysat handles both data and metadata, data about the loaded data, with support for handling files of differing
metadata standards in a consistent and robust manner. Even within the same file standard, differing capital-
ization (case) may be found across files from different teams. Pysat handles metadata in a case-preserving
manner that is also case insensitive, enabling ease of use.

To enable the custom processing required by novel scientific investigations, pysat includes functionality that
mediates the application of custom functions upon data as they are loaded. This design pattern ensures the
availability of the newly processed parameters across all levels of pysat, with no additional effort required by
the user.

To ease data distribution, routines have been created that transparently write a pysat Instrument object to disk
in a netCDF4 file, as well as load that file and produce the same pysat Instrument object. These routines are
written to be consistent with a combined netCDF4 and NASA CDAWeb standard employed by the upcoming
NASA ICON mission.

The validity of pysat functions and instrument-independent analysis is verified through the use of unit testing.
Automated tests have been developed that test instrument support routines, assisting new users in develop-
ing new instrument routines while also ensuring that these routines continue to work. In addition to isolated
unit tests that verify specific outputs from isolated functions, simulated instruments have been developed to
support the testing of pysat and associated functions as users would interact with the system. As changes are
committed to pysat, the test suite is automatically run, ensuring validity and compatibility throughout the
development process.

These features support the development and use of instrument-independent analysis routines allowing users
to focus on the unique aspects of their research project. Pysat’s openness to community development also
provides a place for researchers to disseminate their analysis routines used in their work. The application
of an instrument-independent seasonal bin averaging routine is demonstrated here as an example of one
such routine, using remote measurements from Constellation Observing System for Meteorology, Ionosphere,
and Climate (COSMIC; Yue et al., 2010) and in situ measurements from Communications/Navigation Outage
Forecasting System (C/NOFS; de La Beaujardire & C/NO. F. S. Science Definition Team 2004). Despite the
large difference in measurement type and data format, the same seasonal routine is used on both plat-
forms. This demonstrates geophysical consistency between the platforms. The use of seasonal bin averaging
is widespread in space science data analysis, thus, pysat’s validated instrument-independent implementation
of this technique could assist many scientific studies using the same underlying code.

2. Instrument Object

The core functionality of pysat lies in the Instrument object. The intent of the Instrument object is to offer a
single interface for interacting with science data that are independent of measurement platform. The layer of

STONEBACK ET AL. PYSAT 5272

Journal of Geophysical Research: Space Physics 10.1029/2018JA025297

abstraction presented by the Instrument object is required for instrument-independent analysis procedures,
but it can also make science data analysis simpler and more rigorous.

As a simple metaphor, a software object is like a box with buttons. Inside the box the object stores required
data and the buttons on the box call methods that understand how to interact with the data and produce
the desired products. The pysat Instrument object follows this guideline by storing science data within an
object that also includes a number of basic functions designed to load, modify, and analyze the data over arbi-
trary periods. Data are stored internally in a Python Data Analysis Library (pandas) DataFrame, a format chosen
due to its time-based array indexing and its ability to align multiple data products. The pandas DataFrame is
capable of storing higher-dimensional objects, enabling mixed dimensionality data sets (McKinney, 2010).

Pysat supports one data set per Instrument object, where a data set is defined as having a single-platform
instrument, measurement type, and satellite identifier, as appropriate. Though the particulars of the files
and data differ greatly between missions, the interface to the data through the Instrument object remains
constant. As an example, consider how to initialize Instrument objects for magnetometer data from the Vector
Electric Field Instrument (VEFI) or electron data from the Planar Langmuir Probe (PLP) that flew on board the
Communications/Navigation Outage Forecasting System (C/NOFS), thermal plasma measurement from the
Ion Velocity Meter (IVM) also on C/NOFS; Global Positioning Signals (GPS) from the Constellation Observing
System for Meteorology, Ionosphere, and Climate (COSMIC) satellites, or high-level, ground-based radar
measurements from the Northern Hemispheric portion of Super Dual Auroral Radar Network (SuperDARN):

Note how each instrument requires a different level of specificity based on the division of data products
within each mission. The full list of supported instruments is available directly in python by interactively
inspecting the submodules, as well as within the pysat documentation. Details about the options available
for each instrument are stored directly within the code through a python commenting standard called a
docstring. These docstrings are automatically collected and presented in the pysat documentation, reflect-
ing the current state of the instrument suite. The pysat documentation is integrated with a continuous
documentation service and is automatically generated as versions are released.

For each instrument, pysat looks for supporting routines that understand the unique qualities of the data
set and handles the translation into a pysat compatible format. When no existing routines are available, they
may be added to pysat. However, if no pysat specific support exists but there are already existing packages
to support the loading of a data set, this functionality does not need to be recreated. For example, sup-
port for SuperDARN is fundamentally enabled by DaViT Python Project routines, which obtain and load the
SuperDARN files.

Pysat support for some public data sources may be generalized. In these cases adding a new instrument to
pysat may only involve little effort. Routines have been created for NASA’s CDAWeb CDF and included with
pysat. Pysat’s support of C/NOFS’s IVM, VEFI, PLP, and NASA’s OMNI data sets are all driven by these routines.
The only differences in pysat’s support for each instrument are the cleaning routines, and filename details.

Though the particulars of VEFI magnetometer data, IVM plasma parameters, COSMIC atmospheric measure-
ments, and SuperDARN backscatter measurements are very different, the processes for high-level operations
on these data are the same. Data for any Instrument may be obtained from data servers intended for public
distribution and stored locally by using the “download” function, and data may be loaded for each instrument
using the “load” function. There are multiple options available when instantiating objects and when loading
data that are fully explained in the pysat documentation, but outside the scope of this document.

As mentioned previously, pysat uses the pandas DataFrame to store information internally. The DataFrame
is similar to a spreadsheet, possessing labeled columns and rows. Pysat labels columns by the data name
and rows by date and time. When operations are performed on the underlying data, row indices are aligned
before performing the operation. The loaded data may be accessed at the object level using strings. Support
for slicing and other operations is included.

For the one-dimensional measurements in time, each column in the pandas DataFrame is a simple indexed
array of numbers. However, the pandas DataFrames also support general collections of objects, used
here to support higher-dimensional data structures, such as the two-dimensional electron density profiles

STONEBACK ET AL. PYSAT 5273

Journal of Geophysical Research: Space Physics 10.1029/2018JA025297

from COSMIC. This is shown below for the first four elements of a COSMIC electron density profile. Note that
the profile for this single time is also indexed by altitude.

2.1. Metadata
Maintaining information about the data set is important. Pysat has built-in support to keep track of
metadata, stored in a Meta object attached to the Instrument object. Metadata may be accessed by name at
the object level, similar to standard data. Metadata may be assigned when data are assigned, or as needed.
By default, units, name, notes, description, plot label, axis label, fill value, and plot scaling (linear versus log)
are always tracked by the Instrument object, though arbitrary additional parameters may be added. When
writing to a file, these metadata parameters are translated into a mixed standard spanning file requirement for
the netCDF4 files as well as the International Solar Terrestrial Physics standard employed by NASA’s CDAWeb.
Parameters that may be determined through simple inspection of the data are not tracked.

To help maintain compatibility with multiple standards, the pysat Meta object allows for user-specified string
labels to identify particular metadata types (fill, units, and notes). As an example for fill values, netCDF4 files
should use “_FillValue,” while International Solar Terrestrial Physics specifies “FillVal.” Case is preserved for
these labels; however, data access is case insensitive, thus, “units” works in code even if the label is strictly
“Units.” Label-independent access is also provided, thus users can use attributes attached to the pysat Meta
object to access the desired metadata type without specifying the string used to label those values.

2.2. Modifying Data
Frequently, data sets need to be modified before a larger analysis may be completed. Instrument-specific
modifications are handled in pysat by a nanokernel with a custom processing queue. Functions may be added
to the queue as needed, and whenever new data are loaded the nanokernel will apply the ordered func-
tions before making the data available to the user. This configuration ensures that the newly calculated data
have the same properties and availability as parameters that are native to the file. A data-cleaning example
is shown below. This code segment selects only VEFI magnetometer measurements made at times when the
magnetic torque rods on the spacecraft, used for momentum control, were not contaminating the magnetic
field environment.

Once added, this function will filter the available VEFI data, modifying it in place, every time vefi.load is called.

2.3. Data Flow
The full data flow through the Instrument object when a load call is invoked is shown in Figure 1.
Instrument-specific functions (orange) translate the specifics of the given data set into a format suitable
for pysat. Options and other parameters provided by the user are supplied as needed, shown in green.
Pysat invokes the instrument-specific functions as needed to provide the user with data in the desired form.
Functions handled by pysat are shown in blue.

STONEBACK ET AL. PYSAT 5274

Journal of Geophysical Research: Space Physics 10.1029/2018JA025297

Figure 1. Pysat program flow when a pysat.Instrument.load() routine is called.

3. Generalized Space Science Solutions

Pysat builds upon the consistent object interface across data sets to enable generalized solutions for space

science data analysis and visualization. At a basic level, all analysis routines that use the pysat Instrument

object gain some independence from the particulars of the analyzed data. For example, string-based data

access makes it easy to support programmatic use of data. This and other pysat features allow many analytical

processes to be generalized. Several examples of pysat generalized solutions to common space science data

problems are discussed in this section.

3.1. Recreating Continuous Data from Files

Measurements of continuous processes by scientific instruments are eventually divided into chunks and

stored separately on a file system. These file boundaries can interfere with calculations, particularly for those

times near the file edges. For example, consider a simple centered smoothing filter that averages a set num-

ber of measurements in time. The start and end of the time series will not have enough samples to obtain the

result. To handle this problem, as well as the possibility of data gaps, a user must choose how to balance the

quality and coverage of the output.

Pysat offers a solution to the problem of file breaks in a data set that requires no specific support by any

user-supplied routine. When activated, pysat maintains an internal data buffer that spans three files/days,

depending upon user selected parameters. Each time a user loads data, pysat centers the data buffer on the

requested time, downselects from this full buffer the requested data plus a user-specified amount of data

padding, applies any user-directed custom functions, and then removes the padded data before making the

full results available to the user (see Figure 1). This solution does not fix the calculation everywhere, but rather

pushes the boundaries where the calculation degrades outside the desired time range and then removes the

degraded calculations.

The resulting output is equivalent to a continuous data set, barring measurement gaps. The time period for

this padding is arbitrary up to a maximum additional file or day. While this limits the maximum continuous

data period available for a time-based calculation, shorter-period calculations may be applied without error

over an effectively infinite time series while only using a small amount of computer memory. Applying this

feature over N days only requires N+2 loads from the filesystem. Custom functions applied by the nanokernel

when data padding is enabled do not need to explicitly support the feature, as the data padding is removed

after the custom functions are applied.

STONEBACK ET AL. PYSAT 5275

Journal of Geophysical Research: Space Physics 10.1029/2018JA025297

Figure 2. Sample orbit figure using VEFI data, where the interp flag reflects times when spacecraft operations could
interfere with measurements.

3.2. Iterating Over Time Periods and Orbits

Seasons are one of the natural temporal divisions of geophysical data. To assist the production of seasonally

averaged pictures of the upper atmosphere, the temporal analysis loop can be used to load data for a specified

range of dates, one file at a time, and operated on as needed for the desired analysis. The temporal analysis

loop is a special case of the iteration that is built into the pysat Instrument object. A simple pair of dates

may be set for a single season, or a range of dates may be provided for a more distributed temporal analysis.

The iteration is activated through standard Python functionality, using the same mechanism employed when

iterating over Python list elements. Each loop triggers a load data call on the pysat Instrument object for the

next day of data within the desired date range.

This basic data iteration support is sufficient for daily or orbit-based analysis of science data sets. Since not all

data sets are stored by day, pysat includes functionality to parse from multiple files the data that correspond

to the requested day. Similarly, pysat is designed to support real-time determination of orbit breaks from the

data set, and then iterate over these orbits as desired. Orbits that cross file boundaries are handled using the

pysat Instrument’s iterative functions, moving forward or backward within the data to determine if the desired

orbit begins or ends across one of these filebreaks and then includes the appropriate data.

This combination of features makes it straightforward to make an orbit-by-orbit plot for any of the satellite

missions supported by pysat. A simple code example for plotting the entirety of the VEFI data set by orbit

STONEBACK ET AL. PYSAT 5276

Journal of Geophysical Research: Space Physics 10.1029/2018JA025297

Figure 3. (top) Seasonal occurrence probability demo using VEFI data. The location of the magnetic equator may be
seen in the lower data counts for the data distribution (bottom).

is shown below, while the results are shown in Figure 2. For this particular example the orbits are set to begin
and end at 0∘ geographic longitude.

3.3. Instrument-Independent Seasonal Analysis
Pysat functionality has been used to develop several seasonal analysis routines that are instrument and
iteration independent. An example using a pysat occurrence probability routine is shown, reproducing the
fundamental processing used to obtain published results by Stoneback and Heelis (2014). Note that the pysat
analysis covers all of the data loading, iteration, and analysis. No specific support for VEFI was included in the
routine. The routine calculates the number of times a given value exceeds a supplied threshold at least once
per temporal period (day, file, or orbit), divided by the number of times a given spatial bin is visited per tem-
poral period. As a demonstration, the probability of a positive perturbation in the meridional component of
the geomagnetic field by orbit is shown over a week for VEFI in Figure 3.

To help ensure that the plotted data is geophysical, the VEFI torque rod exclusion function introduced earlier
is attached to a VEFI pysat object. This function selects data when magnetic torquers on C/NOFS were idle.
The torque rod firings interfered with the electromagnetic measurements and are generally located near the
magnetic equator. The reduction in counts in Figure 3 (bottom) along the magnetic equator demonstrates
that the custom function is properly selecting data. The code to produce Figure 3 is as follows:

STONEBACK ET AL. PYSAT 5277

Journal of Geophysical Research: Space Physics 10.1029/2018JA025297

Pysat also includes generalized seasonal analysis routines that support averaging multiple instrument param-
eters of various dimensionality over a season. Here we use this functionality to average both IVM and COSMIC
data, enabling comparisons between the average distributions of ion density and ion drift. The same general
process used to obtain the VEFI occurrence probability is used; both IVM and COSMIC pysat objects are instan-
tiated and passed along to the seasonal pysat routines for analysis. The COSMIC data set does not come with
location information in geomagnetic coordinates, or with information on the topside scale height, so these
parameters are calculated using custom functions and applied to the data set automatically using the nanok-
ernel functionality. The nanokernel functionality ensures that the custom COSMIC parameters are available
for averaging within the seasonal bin averaging routine.

Figure 4 includes ion drift measurements from IVM and electron density profile parameters from COSMIC,
seasonally averaged over apex longitude and local time. The use of apex longitude organizes the data based
upon the apex location of the geomagnetic field line at the measurement location. IVM-derived vertical ion
drifts are at the top followed by the COSMIC-derived ion density maximum, height of the density maximum,
and the thickness of the density distribution. This ion drift average displays downward afternoon ion drifts,
a characteristic of the ionosphere during very low solar activity levels (Stoneback et al., 2011). These ion
drifts employ a geophysically motivated calibration to appropriately set the zero ion drift level used when
translating raw IVM measurements to geophysical ion drifts (Stoneback et al., 2011).

In the late afternoon and evening sector, longitudinal and local time variations in the meridional ion drift
recorded by IVM have equivalent variations in the altitude of the density maximum recorded by COSMIC.
A strong correlation between drifts and density is not expected during the morning through afternoon, as
plasma production from sunlight is a dominant driver of density. In the late afternoon and evening hours,
when plasma production and loss processes are small or nearly equal, redistribution of the plasma to differ-
ent altitudes through transport by ion drifts are expected to have a measurable impact upon the ionosphere.
The results in Figure 4 between 15 and 24 local time have a strong apparent correlation between areas
with upward (downward) ion drifts and an increase (decrease) in the height of the density maximum across
all longitudes.

The full electron density profiles from COSMIC are shown in Figure 5 and correspond to the first four longitude
sectors (0∘–60∘) in Figure 4. The first two longitude sectors (top panel) have upward slants in the bottomside
density distribution at night, consistent with the upward drifts after sunset in Figure 4. In contrast, the bottom
two panels, show longitudes associated with downward drifts in the evening and have flat bottomside ion
distributions at night. These changes in the bottomside density profiles are consistent with the meridional
plasma drift, because a negative drift moves plasma to lower-altitude field lines with higher neutral densities,
where loss processes rise exponentially. This effectively produces a minimum viable altitude for the nighttime
ionosphere. The consistency demonstrated between IVM and COSMIC measurements provides supporting
evidence that both platforms are reporting measurements with geophysical significance that have been

STONEBACK ET AL. PYSAT 5278

Journal of Geophysical Research: Space Physics 10.1029/2018JA025297

Figure 4. Comparison of seasonal averages of IVM meridional ion drifts (top) and averages of COSMIC profiles covering
NmF2, hmF2, and topside scale height.

analyzed in a consistent and appropriate manner. The same generalized seasonal analysis code was used
for both IVM and COSMIC. The complete code to produce these figures is included in the pysat repository
under demos.

3.4. Validating Results
To validate space science results, both the code and the underlying data must be tested. A suite of unit tests
have been developed to help ensure robust performance of pysat and its features. These tests initialize the
system in a known state, perform a limited set of operations, and then compare the result of those operations
against a known output. The pysat development repository is connected to a continuous integration service,
which runs the test suite after every change to the codebase. Currently, 460 unit tests cover 82% of pysat’s
code, as determined using standard community tools. Basic tests cover options for instantiating the pysat
Instrument object and its handling of data, metadata, and files.

STONEBACK ET AL. PYSAT 5279

Journal of Geophysical Research: Space Physics 10.1029/2018JA025297

Figure 5. Seasonal average of COSMIC electron density profiles.

To facilitate the testing of pysat features that require science data, such as the nanokernel support,
orbit-by-orbit iteration, and instrument-independent analysis functions, testing instrument platforms are also
included. These pysat test instruments operate like a normal pysat Instrument object. However, the typi-
cal load routines that read science data from the filesystem are replaced with a basic simulation of satellite
motion. Signals representing the large-scale periodic features of local time, longitude, latitude, altitude, etc.
are generated. These routines produce infinite continuous streams of reproducible data that may be used as
known inputs in a unit testing framework.

The general process of determining orbits from a random science data set faces a number of data and file
issues. Accounting for these variables, along with the various input options that can be selected, required a
significant testing suite. Iterating by orbit requires, in part, determining where orbit breaks occur, completing
orbits across file breaks, accounting for data gaps, and ensuring consistent orbit numbering. To cover all of
these options a general class of orbit tests were created that produced a wide range of data and file gaps.

STONEBACK ET AL. PYSAT 5280

Journal of Geophysical Research: Space Physics 10.1029/2018JA025297

Each problem type is expanded upon to ensure coverage for edge and pathological cases. This whole suite
of tests is then run using each type of orbit pysat supports (local time, longitude, latitude, and orbit number),
ensuring that loading or processing data by orbit will not affect the scientific analysis.

Unit tests have also been developed to monitor the instrument-specific routines that download, load, and
clean science data as part of the pysat process. Each run of the unit testing suite downloads, loads, and
cleans test days for pysat-supported instruments using data obtained from the appropriate public data source.
General pysat compliance is also checked, assisting users developing code to support new instruments. Some
instruments have to be excluded from parts of the testing process, as access to the data sources requires
authentication.

3.5. Creating Data for Distribution
Creating data sets suitable for distribution has remained a challenge. Files that are easy to put together lack the
metadata for a self-supporting specification of the data. Formats that are capable of storing a wide variety of
data, formats, and metadata generally require significant effort to provide this information. Pysat approaches
this issue on two fronts. Pysat includes metadata by default. Thus, as a routine to create a data set is written,
both the data and metadata may be specified naturally. Following best coding practices, the data specification
work is distributed across the whole development effort.

When a pysat Instrument object loads data both the instrument data and metadata are pulled from the file
and attached to the pysat Instrument object. File routines have been created to reverse this process and trans-
parently store a pysat object to disk as a netCDF. As many different data schemes may be stored within pysat,
a translation layer has been developed that stores the data in the netCDF in a format intuitive to humans.
A complementary netCDF load routine is also included with pysat, making it possible to recover the original
pysat Instrument object state without any additional processing. Recovery back to the original pysat object
relies upon a variable-naming pattern and thus is not guaranteed for nonpysat netCDFs.

4. Future Possibilities

Pysat provides a systematic and versatile framework for the arbitrary modification and analysis of data. A selec-
tion of instruments and analyses are included that currently reflect the research interests of the authors. The
list is not exhaustive. Since instrument data types ranging from in situ satellite data, satellite-based remote
sensing data, and ground-based data have already been successfully integrated into pysat, a wide range of
instruments are expected to be supported without significant changes to pysat’s structure. With commu-
nity support, the full range of space science data sets could be available from a single, consistent interface.
Additional analysis types, such as superposed epoch analysis, can also be added to pysat.

Pysat’s support for test instruments and inclusion of unit testing provides a mechanism to validate analysis
code. Details of exhaustive test procedures are not typically included in scientific publications, limiting the
ability of the audience to audit the analysis. Adoption of open source analyses such as pysat by the community
provides a verifiable code standard that minimizes both the effort required by the author and the innate level
of trust required by the reader. The sum total of publications based upon pysat code provides a heritage
base that supports future publications. This can be of particular importance for analyses that produce
controversial results.

Pysat’s structure enables a common ground and a single interface for all space science data sets. This does not
preclude the development and use of instrument-specific packages, as desired by the community. In these
situations pysat can and will make use of the instrument-specific tools when adding support for that instru-
ment. In most cases, a thin translation layer from the native data format to the pandas DataFrame will provide
the majority of the required functionality. A pair of functions that translate the data back and forth between
standards would even enable the use of instrument-specific processing functions from within pysat. While
the instrument-specific package may be optimal for primary instrument users, outside users could utilize the
standard interface provided by pysat and still benefit from the creation of the instrument-specific tools.

The range of file management features required to support pysat also provide an underlying basis for a
CubeSat data processing system. While Explorer-level missions supported by NASA typically have enough
funds to produce a dedicated software ecosystem to support the processing of data, funding levels typically
employed for CubeSats are insufficient for this level of software development. Pysat provides a foundation

STONEBACK ET AL. PYSAT 5281

Journal of Geophysical Research: Space Physics 10.1029/2018JA025297

for file and data processing management that reduces the workload required to create a system capable
of delivering upon the science goals of the mission. If leading CubeSat missions are willing to use pysat for
this purpose as well as contribute code back to the repository, this community resource could increase both
the dollar and science efficiency of future CubeSat missions.

The functions provided by pysat constitute the underlying functionality needed to drive a Graphical User
Interface (GUI) for easy visualization of data. In this scenario if a user finds something interesting visually and
wanted to complete a more rigorous analysis, the exact same tools would be available at the command line,
providing continuity for scientific analysis. Given that user interface requirements can differ significantly based
upon the analysis or instrument type, a range of specialized GUIs all powered by the same underlying pysat
code would be ideal.

Functionality provided by pysat also supports the creation of a Constellation object, a heterogenous collection
of pysat Instrument objects. This abstraction will allow custom collections of instruments to be operated upon
as a whole. As the processing required for each instrument within the constellation could be unique, custom
functions may be attached to the Constellation object and applied to individual instruments automatically.
Analysis functions and orbit determination on the constellation level are also planned.

5. Conclusion

Pysat provides a systematic process for custom analysis of science data sets. The pysat Instrument object
enables a complex flow for each user request of data, providing for an arbitrary relationship between the
requested and archived data. This processing flow is used to solve problems associated with multiple data
sets, data distribution in files, accurate time- series calculations, orbit determination, data modification, and
the calculation of new scientific products. The combination of the pysat Instrument object, pandas DataFrame,
and this computational versatility enables instrument-independent analysis and simplifies the comparison of
results across data sets. These features are expected to be sufficient to enable integration of data sets across
space science into a single common platform.

The adoption of unit testing across the package provides a verification chain to ensure that results are robust.
Tests are applied to the Instrument object as well as the higher-order analysis routines (seasonal bin aver-
aging, etc.) The public availability of both the code and the tests provides a mechanism for verifiable and
reproducible science. Should pysat be adopted by the wider community, additional validation is gained as
scientists use and individually verify the tools as part of their own research. Thus, scientific papers that incorpo-
rate pysat not only benefit from the heritage established by previous use, each new use of pysat also provides
validation that the outputs provided by pysat are scientifically valid.

Pysat is being used as a foundational framework for ground station processing of IVM measurements for the
upcoming ICON and COSMIC-2 missions. While work is still underway, pysat has been integrated by both
COSMIC Data Analysis and Archive Center and the Berkeley ground software system in anticipation of these
missions. The data flow generated by these missions will provide a strong heritage that future missions and
science data analyses can build upon.

References
Burrell, A., & Chisham, G. (2018). aburrell/ocbpy: Beta Release (Version 0.2b1). Zenodo. https://doi.org/10.5281/zenodo.1217177
Burrell, A., Meeren, C., & Laundal, K. (2018). aacgmv2: v2.4.1 (Version 2.4.1). Zenodo. https://doi.org/10.5281/zenodo.1212695
CEDAR (2010). The New Dimension.
Chisham, G., Lester, M., Milan, S. E., Freeman, M. P., Bristow, W. A., Grocott, A., et al. (2007). A decade of the Super Dual Auroral

Radar Network (SuperDARN): Scientific achievements, new techniques and future directions. Surveys in Geophysics, 28(1), 33–109.
https://doi.org/10.1007/s10712-007-9017-8

DaViTPy (2012). Data and visualization toolkit—-Python for SuperDARN. Retrieved from https://github.com/vtsuperdarn/davitpy
de La Beaujardire, O., & C/NO. F. S. Science Definition Team (2004). C/NOFS: A mission to forecast scintillations. Journal of Atmospheric and

Solar-Terrestrial Physics, 66(17), 1573–1591. https://doi.org/10.1016/j.jastp.2004.07.030
Duly, T., & Butala, M. (2013). PyGlow: Upper atmosphere climatological models in Python. Retrieved from

https://github.com/timduly4/pyglow
Gil, Y., David, C. H., Demir, I., Essawy, B. T., Fulweiler, R. W., Goodall, J. L., et al. (2016). Toward the geoscience paper of the future:

Best practices for documenting and sharing research from data to software to provenance. Earth and Space Science, 3, 388–415.
https://doi.org/10.1002/2015EA000136

Greenwald, R. A., Greenwald, R. A., Baker, K. B., Dudeney, J. R., Pinnock, M., Jones, T. B., et al. (1995). DARN/SuperDARN. Space Science Reviews,
71(1–4), 761–796. Retrieved from https://doi.org/10.1007/BF00751350

Acknowledgments
This paper was supported by NSF grant
125908 and NASA grant NNX10AT02G.
The data used in this article may be
obtained from the following sites:
CDAWeb: http://cdaweb.gsfc.nasa.gov;
CDF Library: http://cdf.gsfc.nasa.gov;
CDAAC: http://cosmic-io.cosmic.
ucar.edu/cdaac/index.html; pysat:
https://github.com/rstoneback/pysat;
pysatCDF: https://github.com/
rstoneback/pysatCDF; and DaViTpy:
https://github.com/vtsuperdarn/davitpy.

STONEBACK ET AL. PYSAT 5282

https://doi.org/10.5281/zenodo.1217177
https://doi.org/10.5281/zenodo.1212695
https://doi.org/10.1007/s10712-007-9017-8
https://github.com/vtsuperdarn/davitpy
https://doi.org/10.1016/j.jastp.2004.07.030
https://github.com/timduly4/pyglow
https://doi.org/10.1002/2015EA000136
https://doi.org/10.1007/BF00751350
http://cdaweb.gsfc.nasa.gov
http://cdf.gsfc.nasa.gov
http://cosmic-io.cosmic.ucar.edu/cdaac/index.html
http://cosmic-io.cosmic.ucar.edu/cdaac/index.html
https://github.com/rstoneback/pysat
https://github.com/rstoneback/pysatCDF
https://github.com/rstoneback/pysatCDF
https://github.com/vtsuperdarn/davitpy

Journal of Geophysical Research: Space Physics 10.1029/2018JA025297

Harter, B., & Liu, M. (2018). Retrieved from https://github.com/MAVENSDC/cdflib
Hunter, J. (2007). Matplotlib: A 2D graphics environment. Computing in Science Engineering, 9(3), 90–95.

https://doi.org/10.1109/MCSE.2007.55
Jones, E., Oliphant, T., & Peterson, P. (2001). SciPy: Open source scientific tools for Python. [Online; accessed 2016–02–19].
McKinney, W. (2010). Data structures for statistical computing in python. In S. van der Walt & J. Millman (Eds.), Proceedings of the 9th Python

in Science Conference (pp. 51–56).
Meeren, C., Burrell, A. G., & Laundal, K. (2018). apexpy: ApexPy version 1.0.3 (Version 1.0.3). Zenodo. http://doi.org/10.5281/zenodo.1214207
Morley, S., Welling, D., Koller, J., Larsen, B., Henderson, M., & Niehof, J. (2010). SpacePy—A Python-based library of tools for the space

sciences. In S. van der Walt & J. Millman (Eds.), Proceedings of the 9th Python in Science Conference (pp. 39–45).
Pérez, F., & Granger, B. (2007). iPython: A system for interactive scientific computing. Computing in Science Engineering, 9(3), 21–29.

https://doi.org/10.1109/MCSE.2007.53
Rideout, B. (2004). Open Madrigal initiative. Retrieved from https://madrigal.haystack.edu/madrigal/madDownload.html
Stoneback, R. A., & Depew, M. (2018). rstoneback/pysatCDF: Windows compatibility and improved pysat meta handling (Version 0.3.0).

Zenodo. http://doi.org/10.5281/zenodo.1217181
Stoneback, R. A., & Heelis, R. A. (2014). Identifying equatorial ionospheric irregularities using in situ ion drifts. Annales Geophysicae, 32,

421–429. https://doi.org/10.5194/angeo-32-421-2014
Stoneback, R. A., Heelis, R. A., Burrell, A. G., Coley, W. R., Fejer, B. G., & Pacheco, E. (2011). Observations of quiet time vertical ion

drift in the equatorial ionosphere during the solar minimum period of 2009. Journal of Geophysical Research, 116, A12327.
https://doi.org/10.1029/2011JA016712

Swoboda, J., Hirsch, M., Stuhlmacher, A., Starr, G., & Semeter, J. (2016). jswoboda/GeoDataPython: ISR Sim paper (Version v0.1). Zenodo.
http://doi.org/10.5281/zenodo.154533

van der Walt, S., Colbert, S., & Varoquaux, G. (2011). The NumPy array: A structure for efficient numerical computation. Computing in Science
Engineering, 13(2), 22–30. https://doi.org/10.1109/MCSE.2011.37

Yue, X., Schreiner, W. S., Lei, J., Sokolovskiy, S. V., Rocken, C., Hunt, D. C., & Kuo, Y.-H. (2010). Error analysis of Abel retrieved electron density
profiles from radio occultation measurements. Annales Geophysicae, 28(1), 217–222.

STONEBACK ET AL. PYSAT 5283

https://github.com/MAVENSDC/cdflib
https://doi.org/10.1109/MCSE.2007.55
http://doi.org/10.5281/zenodo.1214207
https://doi.org/10.1109/MCSE.2007.53
https://madrigal.haystack.edu/madrigal/madDownload.html
http://doi.org/10.5281/zenodo.1217181
https://doi.org/10.5194/angeo-32-421-2014
https://doi.org/10.1029/2011JA016712
http://doi.org/10.5281/zenodo.154533
https://doi.org/10.1109/MCSE.2011.37

	Abstract
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (ECI-RGB.icc)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /ZapfDingbats
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

